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ABSTRACT

Pulsed Plasma Thrusters (PPTs) are a new option for attitude control of a small spacecraft and may result in reduced

attitude control system (ACS) mass and cost. The primary purpose of an ACS is to orient the spacecraft to the

desired accuracy in inertial space. The ACS functions for which the PPT system will be analyzed include disturbance

torque compensation, and slewing maneuvers such as sun acquisition for which the small impulse bit and high

specific impulse of the PPT offers unique advantages. The NASA Lewis Research Center (LeRC) currently has a
contracted flight PPT system development program in place with Olin Aerospace with a delivery date of October

1997. The PPT systems in this study are based upon the work being done under the NASA LeRC program.

Analysis of the use of PPTs for ACS showed that the replacement of the standard momentum wheels and torque rods

with a PPT system to perform the attitude control maneuvers on a small low Earth orbiting spacecraft reduced the
ACS mass by 50 to 75% with no increase in required power level over comparable wheel-based systems, though

rapid slewing power requirements may present an issue.

1. INTRODUCTION

In this age of shrinking spacecraft size and smaller
launch vehicle capacity, there is a greater need to fit

more payload for more science return on a given

spacecraft. For a given launch vehicle, increasing the

payload mass requires a reduction of the mass and
volume of the other spacecraft subsystems. Mass,

volume, system comPlexity, reliability, and cost are
critical areas in the design of a small spacecraft. Any

additional subsystem increases spacecraft complexity
and mass. In order to decrease spacecraft bus size or to

increase the payload for a given bus, the core systems
need to be made smaller and lighter. This paper

presents a new option for ACS which may achieve

these goals.

This study is a feasibility analysis of a Pulsed Plasma

Thruster (PPT) system to perform disturbance torque

compensation and deadband control for a small

spacecraft in low earth orbit (LEO). Pulsed plasma
thrusters accelerate small quantities of ablated

fluorocarbon propellant to generate very small impulse

bits (100 to 1000 I.tNs) at high specific impulse (-1000

s).l These characteristics make PPTs an attractive

option for ACS functions. State-of-the-art attitude

control systems consist of hardware such as momentum
wheels, magnetic torque rods, and/or thrusters, typically

hydrazine (N2I-I4), used to stabilize the spacecraft against

disturbance torques resulting from either environment or

spacecraft operation. The capabilities of PPTs will be
examined to perform the total ACS functions in this

study. Since momentum wheels are well known and

trusted, replacement of the magnetic torque rods or
thrusters in dumping the momentum wheels, or

replacement of two of the three momentum wheels used
in 3-axis stabilization are also viable options for the use
of PPTs and will be left as topics of further studies.

Section two of this paper will present a background of

attitude control functions as well as a baseline of current



ACS. Sectionthreeoffersadescriptionof PPTswith
informationaboutpresentandfuturegroundtest
demonstrationsandbriefhistoryof thePPTprogram.
Withthismaterial,theanalysisinsectionfourpresents
the resultsof using PPTsto performboth the
momentumcompensationin placeof wheelsand
slewingmaneuvers.Finally,sectionfivesummarizes
theconclusionsofthispreliminaryfeasibilityanalysis.

2.ATTITUDECONTROLSYSTEMS

Theattitudecontrolsystemofaspacecraftstabilizesand
orientsit in thedesireddirectionandto thedesired
fidelityasdictatedbythemission.Disturbanceswhich
threatento corrupt this attitudearise from the
environmentaroundthespacecraft(gravity-gradient,
solar pressure,magneticfield interactions,and
atmosphericdrag)aswellasfromthespacecraftitself
(propellantsloshing,thrustermisalignment,andoffsets
betweenthecenterof gravityandcenterof pressure).2
Thewheelscountertheangularmomentuminducedby
thesetorquesthroughspinning,whilethrustersarefired
tobalancetheexternaltorques.2

A typicalACSin usetodayconsistsof fourwheels
(threeprimaryandonebackuptocoverthreeaxes),an
electronicsunit,andawheeldesaturationsystem.The
lattercanbeeithermagnetictorquerodswhichusean
electriccurrentto producea magneticfield which
interactswith theearth'smagneticfieldto producea
torque,orhydrazinethrusterswhichproduceaforcethat
actsonamomen_armonthespacecraftalsotoproduce
atorque.Fourwheel,three-axissystemsforattitude
controlcanbemassiveandhighvolume,andhave
sufferedfromreliabilityproblems.Asoneexample,the
ESA(EuropeanSpaceAgency)spacecraftSOHO(Solar
andHeliosphericObservatory)experienceddifficulties
with its momentumwheelswhichthreatenedthe
impendinglaunchdate.Thewheelshadtobereplaced
completely.3

Twoexamples of current small spacecraft and their ACS
hardware are the TOMS-EP (Total Ozone Mapping

Spectrometer - Earth Probe), and the WIRE (Wide Field
Infrared Explorer). The TOMS-EP spacecraft is part of
the Mission to Planet Earth and will measure the ozone

and sulfur dioxide content of the atmosphere for a

minimum of two years. WIRE is a part of the SMEX

(SMall EXplorer) project and its four month mission is

to study galaxy evolution through the use of

cryogenically cooled telescopes and infrared detectors. 4

A breakdown of the components and masses of the

TOMS-EP and WIRE spacecraft are presented in Table

2-1.5 The attitude control systems represent a large

fraction of the dry mass of the two spacecraft. For

comparison, the TOMS-EP system the ACS, including

72.6 kg of hydrazine onboard, is 20% of the total

spacecraft dry mass. For the WIRE spacecraft, with its
shorter lifespan, the ACS represents 10% of the dry

mass. These examples show that the ACS can be a

significant percentage of the total spacecraft mass

depending upon the specific mission.

3. PULSED PLASMA THRUSTERS

Pulsed plasma thrusters are currently under development

for a wide range of functions including attitude control.

PPTs rely on the Lorentz force generated by the

interaction of an arc passing from anode to cathode with

the self-induced magnetic fields to accelerate a small

quantity of ablated chloroflourocarbon propellant. As
shown in Figure 3-1, the thruster system consists of the

accelerating electrodes, energy storage unit, power

conditioner, ignition circuit, propellant feed system, and

telemetry. During operation, the energy storage

capacitor is first charged to between 1 and 2 kV. The

ignition supply is then activated to generate a low
density plasma which permits the energy storage

capacitor to discharge across the face of the fluorocarbon

propellant bar. This arc ablates, heats, and accelerates

the propellant to generate thrust. Peak arc current
levels are typically between 5 and 15 kA, and the arc
duration is between 5 and 20 Its. The pulse cycle is

repeated at a rate compatible with the available

spacecraft power, which for ACS applications would

likely be well below 10 W. The ability to use the same
thruster over a wide range of spacecraft power levels

without sacrificing performance or having a complex

throttling algorithm is one of the advantages of PPTs.

The propellant feed system consists solely of a negator

spring which pushes the solid fluorocarbon bar against a

stop on the anode electrode, eliminating safety and

reliability concerns with valves or pressurized systems.
There are no other moving parts on the PPT, resulting

in a propulsion system which is extremely inexpensive

to integrate onto spacecraft and can be stored indefinitely
with little concern for storage environment. The latter

was recently demonstrated when PPTs stored for over 20

years in an uncontrolled environment were successfully
fired at both the NASA Lewis Research Center (LeRC)

and the Olin Aerospace Company (OAC). The largest



masscomponentsof thePPTaretheenergystorage
unit (acapacitoror pulse-formingnetwork)andthe
systemelectronics,includingthepowerconditioning
unit, dischargeinitiation,andlogicandtelemetry
circuits.Recentdevelopmentsin thesetechnologies
provideseveraloptionswhichcanresultin asystem
massreductionbyafactoroftwo.

PPTswereextensivelydevelopedin thelate1960'sand
early1970's.Figure3-2showstherangeof impulse
bitsdemonstratedonflightor flight-qualifiedsystems.
ThePPTsystemdevelopedduringthatperiodwiththe
most flight experiencewasusedon the Navy's
TIP/NOVAnavigationsatellitesandoperatedatapeak
powerlevelof 30W duringfiring. TheNOVAPPT
hadaspecificimpulse(Isp)of 543s,animpulsebitof
400I.tN-s,atotalimpulsecapabilityof2450N-s,anda
fueledsystemmassof6.8kg.6Thebaselinetechnology
fortheongoingNASAprogramistheflight-qualified
LES8/9PPTsystem,whichwasselectedbecauseof its
higherIspof 1000s anddemonstratedtotalimpulse
capabilityof 10,500N-sandoverl07pulses.7 The
LES8/9operatedat powerlevelsof 25or 50W,
producedanimpulsebitof300I.tN-s,andhada fueled
systemmassof 6.7kg.8

The immediateNASA programobjectivesare to
developaflightPPTsystembyOctober1997witha
fueledsystemmassof 3.5kgcapableof providinga
total impulseof 20,000N-s. Theflight systemis
beingbuiltbyOlinAerospace.Thefactoroftwomass
reductionandtotalimpulseimprovementovertheLES
8/9baselinewill beaccomplishedviauseof recently
developedcapacitors,integratedcircuittechnologyfor
bothtelemetryandpowerelectronics,newstructural
materials,andanincreasein PPTperformance.The
projectedflightsystemcomponentmassesare0.85kg
forcapacitor,0.89kgforelectronicsandcabling,0.53
kgforstructureandelectrodeassembly,and1.23kgfor
fluorocarbonfuel. Thesystemisto bequalifiedfor
2x107pulses.Followingcompletionof theinitial
program,aneffortisplannedtocontinueminiaturizing
thePPTif thereis sufficientinterestin thesmall
spacecraftcommunity.

FortheACSfunction,asingleelectronicsunitcouldbe
usedto chargecapacitor/thrusterunitsplacedin
appropriatelocations(selectedto providerequired
torques)aboutthespacecraft.Whilethisoptionwould
reducesystemmasssignificantly,for thisstudya
completePPTsystemwasassumedto belocatedwith

eachthrusterset,withamaximumofthreethrustersper
capacitor/electronicsunit.Thethreethrusterswouldbe
orientedto thrustperpendicularto one another,
providingcontrolonallthreeaxes.Inthisstudy,three
levelsof PPTtechnologywereincluded:theLES8/9
baseline,thelightweight,higherperformancePPTs
currentlyunderdevelopment,andahigherIspsystem
whichcouldbebuiltunderafutureprogramandiswell
within thedemonstratedcapabilitiesof laboratory
thrusters.

ThedrymassoftheLES8/9PPTsusingthreethrusters
aboutasharedcapacitorisassumedtobe5.2kg(Table
3.1).Fortheneartermadvancedtechnologythrusters
havingIsp1000to 1500sec,thedrymassforthesame
configurationis assumedto be2.7 kg. Thenext
generationadvancedPPTwithahigherIspof 2000sec
isassumedtohaveadrymassof 5.2kgforthesame
configuration.The6and12thrustersarrangements,the
drymassesfortheLES8/9throughtheadvancedPPTs
areasshowninTable3-1.

4.ANALYSIS

Thissectiondevelopsasystemlevelcomparisonof a
PPTsystemandcurrentsmallspacecraftACShardware
forprovidingattitudecontrolforageneric50to300kg,
30 to 150W (totalpowerfrom thesolararrays)
spacecraftina400kmcircularlowearthorbit(LEO)at
0° inclination. Due to the top-level nature of this

study, the worst case disturbance torques are used to
model the environment of a small spacecraft in a 400

km circular orbit. The PPT propellant mass, thrust

time, and average power are determined through a
momentum balancing, rather than a torque balancing,

perspective.

4.1 ORBITAL ASSUMPTIONS & ENVIRONMENT

The first step in the analysis is to evaluate the average
disturbance torques over one orbit. Table 4-1 lists the

magnitudes of environmental contributions from

aerodynamic pressure torque, magnetic field interactions,
solar pressure torques and gravity-gradient effects used in

this analysis. From the assumed mission life of five

years, the total disturbance (To) to the spacecraft is

calculated. While the orbit is assumed to be circular 0°

inclination for this analysis, for polar orbits the only

change would be a decrease in magnetic torque by a
factor of one-half. While important for detailed



estimates,this is within the margin in the analysis

presented here. Both the momentum wheel system and

PPT ACS will use these torques in sizing calculations.

Following the estimation of the state-of-art ACS, two

operational scenarios are presented for the PPTs. First,
section 4.3 will present the results of using PPTs to

replace momentum wheels in the ACS function of

control against disturbance torques. Second, in section

4.4, the capabilities of the PPTs to perform slewing
maneuvers will be examined.

4.2 CURRENT ATTITUDE CONTROL SYSTEM

In order to compare the PPT ACS with a typical ACS,

a generic momentum wheel system with associated
dumping thrusters is developed to establish its
characteristics as a function of spacecraft mass and

cross-sectional area. The assumptions for sizing the

momentum wheel system used for comparison to the

PPT system are based on storing angular momentum

imparted to the spacecraft from the circular torques. The

time between the dumping cycles of the wheels is

established by the magnitude of the secular angular

momentum. From this cyclic torque, the total angular
momentum accumulated to the spacecraft over its five

year lifetime is calculated. The momentum wheel
system used in this study is sized to store one order of

magnitude greater than this momentum over three orbits

before dumping. Wheel mass and radius directly
contribute to the amount of momentum the wheel is

capable of storing. The larger the diameter of the
wheel, the less massive it has to be to absorb the same

amount of momentum. Additionally, thrusters or

magnetic torque rods are needed to desaturate the wheels

once they have reached their maximum speed. The
mass of the baseline wheel system includes six

hydrazine thrusters and propellant for desaturation,

structure at 10% of the total system mass, and drive

electronics at 0.9 kg per wheel. Table 4-2 shows a

breakdown of the assumptions and masses of the

calculated four wheel system.

To establish state-of-the-art ACS characteristics

independent of specific mission requirements, off-the-

shelf component specifications are used in this trade

study. An example wheel, capable of running in both
momentum wheel bias mode and reaction wheel mode,

has a mass of 3.2 kg, height of 183.5 mm, diameter of
204.0 mm and steady state power levels of 3 to 5 W.S

Therefore, four of these wheels would have a mass of

12.8 kg. To size the wheel desaturation system,

magnetic torque rods which provide enough torque to

desaturate the wheels are assumed. Typical torque rods

weigh 1.8 kg, have dimensions 64 cm length by 2.7 cm

in diameter, and consume 5 W power. In order to cover

all three axes, three torque rods are assumed on the

spacecraft with a total mass of 5.4 kg. A typical
attitude control electronics package off-the-shelf has a

mass of 2.7 kg, dimensions of 195 x 170 x 110 mm,

and power input of 3 W.9 This results in a system
with mass of 21 kg, volume of 0.104 m 3, and peak

power level of 30 W without cabling mass, hydrazine
heater or valve power, or margin. Note that this system

is intermediate to the TOMS-EP and WIRE systems

described in section two. Some missions require the

higher momentum dumping capabilities of thrusters,
which would be included in the overall mass, volume,

and cost of the ACS.

4.3 PPT ACS SYSTEM

The total disturbance impulse (angular momentum)
from the environment evaluated in section 4.1 is used in

sizing the mass of propellant the PPT system will burn

to provide the restoring impulse against the
disturbances. While momentum wheels only absorb

cyclical torques, the PPTs are used to cancel out all
disturbances, both the cyclical (magnetic, atmospheric,

gravity-gradient) and secular torques (solar pressure). All

torques are factored into the total disturbance torque
estimation.10 Twelve thrusters are typically used for

full 6 degree of freedom (DOF) control of three-axis

spacecraft using an all propulsive ACS. Figure 4-1
illustrates a scenerio for placement of the PPTs on a

generic spacecraft. For example, both Magellan and
Galileo used twelve thrusters for attitude control.l_ In

cases where full redundancy is not necessary, fewer

thrusters can be used, resulting in the mass of the PPT

system being reduced even further. For a single string

failure system, it is possible to control roll, pitch and

yaw through either six dedicated or four canted thrusters.
In these cases, one thruster failure will result in loss of

propulsive ACS. Both Landsat 7 and TRMM use eight
thrusters for redundant attitude control._2 Twelve

thrusters for full 6 DOF control and redundancy are

included in this analysis. Assuming the torque is

evenly distributed over time and space, the 12 thrusters
located two on each face of the spacecraft see an equal

amount of firing.

4



Thethrustlevelrequiredbythemissiondictatesthe
impulsebit andpulserateof thePPTACSsystem.
Theimpulsebit andnumberof pulsesdictatethe
momentumdeliverableby thePPTsystem.The
momentumimpartedto thespacecraftby thePPT
systemshouldbegreaterthanthedisturbanceangular
momentum(HD). HD is the angularmomentum
accumulatedbetweenpulsesfromthePPTsystem.The
totalangularmomentum(HT)duringthelifetimeofthe
missioniscalculatedbymultiplyingHDby thetotal
numberoforbits.In thefollowingequationsTO is the

sum of both the cyclic and secular disturbance torques. 2

The total number of pulses can also impact on lifetime

issues of the PPTs.

For this analysis, the total momentum is assumed to be

evenly distributed across all three axes allowing each
thruster to see an equal amount of firing. Thus, for the

pulsed thruster, the number of required pulses per
thruster for the entire mission is:

pulses] Hr
thruste-"""_}r - n • I b • L

Here I b is the impulse bit of the thruster (in N-s), L is

the moment arm (in m), n is the number of thrusters.

The propellant mass per thrusters is given by:

Ibm = -- I thruster rP Isp "g

Here Isp is the specific impulse and g is the standard

acceleration due to gravity. The total mass of

propellant is independent of the number of thrusters

placed on the spacecraft. With more thrusters, the time

of operation per thruster decreases, but the total torque
to balance the disturbance does not change. Thrust

time of the PPT system is:

At=n
L-n .Ib -pps

The total thrust time of the PPT system is also

independent of the number of thrusters. More thrusters
result in the duty cycle of each thruster being shortened.

The energy necessary to balance the disturbance impulse

is constant for a given mission. The total energy of the

maneuver is independent of the number of thrusters, Ibi t,

or pulse frequency. However, the latter two variables

drive the peak operating power of the PPT system. In
addition, the PPT pulse rate (pps) and impulse bit

directly affect the thrust time to complete a maneuver.

The pulse rate of the thruster firing directly impacts the
amount of time spent in thrust during the lifetime of

the mission. Lower pulse rates will result in more time

of the mission spent thrusting at a lower power level.

Likewise, higher pulse firing rates will lessen the time

spent thrusting at a higher power level.

The above equations were used to size the PPT ACS for

spacecraft with varying mass and cross sectional area.
For increasing spacecraft mass, the density was held

constant resulting in an increase in spacecraft volume

(thus cross-sectional area for drag calculations) with

increased spacecraft mass. The spacecraft power level
influenced cross-sectional area of the arrays and,

consequently, the disturbance torques from the

atmosphere and solar pressure.

Spacecraft mass does not influence the levels of the
environmental disturbance torques as much as a change

in spacecraft cross-sectional area for the baseline

configuration. Increase in power requires an increase in

solar array area, which in turn results in higher solar

pressure and atmospheric drag contributions. Other

factors such as a change in spacecraft geometry from the
addition of antennae, booms, etc., can also contribute to
an increase in cross-sectional area. For the purpose of

this study, the spacecraft bus was simplified and only
the arrays significantly change the cross-sectional area.

The solar array aspect ratio and area are based on the

Solar Electric Propulsion Stage (SEPS) array

technology (66 W/kg). 13 Figures 4-2 and 4-3 show the

ACS system masses (both wheel and PPT) for

disturbance impulse balancing as a function of

spacecraft mass and cross-sectional area respectively.
As shown in figure 4-2, the mass of the ACS system
which absorbs the increase in momentum caused by the

increase in cross-sectional area must increase. The

momentum wheel system mass increases as the

physical size of the spinning mass increases to absorb
the increased disturbance momentum. In the PPT

system, an increase in momentum translates to an

increase in propellant and thrust time.

The first comparison between the baseline wheel system

and the PPT system for momentum compensation is
mass. It can be seen in Figures 4-2 and 4-3 that the

PPT attitude control system (12 kg) for disturbance



torquecompensationis50%to 25%ofthemassof the
momentumwheelsystem(20-40kg) for varying
spacecraftmass.Inthecaseofvaryingspacecraftcross-
sectionalarea,thePPTACSmassis50%to 12%of
themassof themomentumwheelsystem(20-80kg).

Theenergyof thePPToperationin themaneuver
determinesthepowerrequirementsto thissubsystem.
Theenergyperpulse(Ep)multipliedbythenumberof
pulsesperseconddefinestheaveragepowerof thePPT
system.PeakpowerlevelswhilethePPTsarefiringare
directlyrelatedto impulsebitandpulserateatwhich
theyareoperating.A maneuverrequiringmorethrust
willalsorequireahigherpowerlevel.

In orderto determinewhetherthis is a reasonable
systemfromthestandpointofoperationandlifetimeof
thePPTs,thenumberof pulsesandpowerlevelsofthe
PPTs to perform the momentumbalancingis
calculated.Thenumberofpulsesperthrusterincreases
as the amountof disturbanceangularmomentum
increases.At thelowend(spacecraftmass100kg,
arraycross-sectionalarea1.7m2),thereare1.5x106
pulsesrequiredper thruster,andat the highend
(spacecraftmass300kg,andarraycross-sectionalarea
3.2m2)thenumberof pulsesrequiredperthrusteris
3.18x106.Botharewellundertheexpectedlifeof 107
pulses. TheaveragepowerconsumedbythePPT
system for angular momentumcompensation
throughoutthefiveyearlifeofthespacecraftisconstant
fora givenspacecraftconfiguration(massandcross-
sectionalarea).Animpulsebitof 580I.tNsisusedin
boththePPTwithIsp1000sandIsp1500s.Forthe
lowendmentionedpreviously,theaveragepoweris
0.08WforthePPTswithIspof 1000s,and0.13W for
PPTswithIspof 1500s,and0.37W. At thehighend
configuration,theaveragepoweris 0.18W for the
systemwith Ispof 1000s and0.28W forthe1500s
system. Theseaveragepowernumbersresultin
9.42x10-3and2.01x10-2pulsesperthrusterpersecond
respectivelyoverthelifetimeof thespacecraft.This
amountstoapulseroughlyeveryonetotwominutes.
Thedeadbandangularspacecraftdriftbetweenpulsesfor
thesetwopowerlevelsis0.03° and 0.014" respectively.

Higher frequencies will result in smaller deadband

angles. The average power during operation is driven

by the pulse frequency at which the PPTs are fired.

Higher pulse frequencies result in higher average power

levels. For example, in the low end spacecraft case, a

pulse frequency of 0.05 Hz results in average power

during firing of 0.9 W, where a frequency of 3 Hz

results in a average power of 54.8 W. Therefore, the

power consumption of the PPT system is a function of
the demands of the mission.

4.4 SLEWING MANEUVERS

A second function for which the PPTs are analyzed is a

slew maneuver of 360* (2r_) about one axis. Assuming

that the spacecraft is in an unknown orientation and it

must rotate about one axis, the maneuver is split into

two PPT firing sequences in opposite directions. Two

PPTs in a pure couple configuration pulse one half of
the maneuver to start the rotation, and one half to stop.

For slewing maneuvers in which a large angular

rotation to the vehicle is required, the required PPT

power levels increase as the required maneuver time
decreases.

The power averaged over the entire maneuver duration is

solved independent of pulse rate or impulse bit for these

calculations, and is solely a function of time required for

the maneuver. The following equation shows power as
a function of maneuver time.

0
Pavg _

rI'L'(AT _

Here, 0 is the slew maneuver angle, Isp is the specific

impulse of the PPT, g is the gravitational constant, I_n

is the moment of inertia of the spacecraft, ri is the

efficiency of the thruster system, L is the moment arm,
and AT is the maneuver time. Therefore, a 0 of 2n is a

worst case slew maneuver, and smaller angles will

result in smaller average power requirements.

In the case of the complete rotation, as the time

constraint is reduced, a larger torque is needed and

therefore the PPT must provide either a higher impulse

bit or higher pulse rate. Each of these increases results

in a higher average power for the PPT system. The
result is illustrated in Figure 4-4 which shows the

average power levels of different I_ PPTs versus the

time required for a complete 360* spacecraft rotation.

The spacecraft assumptions include a moment arm of
0.5 m, and moment of inertia (Icm) of 80 kg-m 2. For

maneuver time requirements of less than 10 minutes,

average power levels are 200 W and greater. If more
than 50 minutes is allowed to the maneuver, the average

power levels are 10 W and lower. These power levels
only need to be sustained during the slew maneuver and



couldbesuppliedfrombatteries.FromFigure4-4,
averagepowerversustime to performthe slew
maneuver,it canbeseenthatthelowerthetime,the
higherthepowerrequirementfromthePPTsystem
becomes.Formaneuversthatmustbeperformedina
minute,thePPTpowerreaches10,000W, andof
courseasymptoticallyapproachinfinityasthemaneuver
timegoestozero.However,if thetimesarerelaxed,
the PPTsystembecomemore feasiblefor this
application.An alternatepointof viewof thePPT
systemforslewmaneuversis presentedinFigure4-5.
Timeof maneuveris alsoafunctionof pulseratefor
varyingimpulsebits. Pulseratein turndrivesthe
averagepowerrequiredfromthePPTsystem.This
analysisservestocorroboratetherelationshipbetween
timeofmaneuverandaveragepowerrequirementsofthe
PPTsystem.

5.CONCLUSION

Thisstudydemonstratedthefeasibilityofusingpulsed
plasmathrustersto providethemomentumlevels
neededtobalancethedisturbancetorquesimpartedtoa
small(100- 300kg)spacecraftinLEO.Becauseof
theirhighI_p(1000to 2000sec),PPTsusea small
amountof propellantto performthe equivalent
maneuverof a hydrazinethrustersystem. The12
thrusterredundantPPTACSconfigurationsin this
studywereconsistentlyhalfthemassor lessof an
equivalentbaselinemomentumwheelsystem.Average
powerlevelsfor theattitudecontrolfunctionsrange
from0.08W to0.28Win worstcasescenarios.PPT
ACSsystemsusedfor environmentaldisturbance
compensationarelessmassiveandrequireloweraverage
powerthanthecounterpartwheel/thrustersystems.
Therefore,it is feasibleto usePPTsto performthe
momentumcounteringfunctionsofmomentumwheels
systems.

Forslewingmaneuvers,thePPTsystemperformswell
for maneuversthataregivenlongertimetocomplete.
Averagepowerlevelsforslewingmaneuversrangefrom
I0 W or lessfor timesof greaterthan50minutes.
Maneuversoflessthan10minuteswouldrequirelarger
powerlevels,ora differenttypeof actuator,suchas
thrustersoramomentumwheel.

Furtherworkremainsin theareasofcontrolsandtorque
matchinginordertobettermodeltheuseof PPTsfor
attitudecontrol.Additionally,theareaof deadband
controlthroughtheuseofpulsedplasmathrustersisa

nextlogicalstepinthestudyof theapplicationof PPTs
tosmallsatelliteattitudecontrol.
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TOMS-EP WIRE
Wetmass 288.6 k_z
DryMass 21 6 kg

3 reaction wheels 27.6 kg

electronics 5.85 kg

3 magnetic torque rods _.58 kg
totalACS mass 42.03 kg

Mass fraction of ACS 20 %

Wet mass

Dry Mass
4 reaction wheels

3 torque rods

250

14.4

7.24

Mass total ACS massfraction of ACS

21.6
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Table 2-1: Example Spacecraft Attitude Control Systems

kj_

kg

kg

kg

kg

%

Specifications

unit dry mass (kg)

6 thruster dry mass (kg)

12 thruster dry mass (kg)

total impulse (N-s)

efficiency (%)

Iso (sec)

LES 8/9 Current

5.2 2.7

10.4 5.4

20.8 10.8

10000 20000

8 16

1 000 1000

I 2.7

5.4

i 10.8
i

i 20000

i 16

1 500

Table 3-1: Pulsed Plasma Thruster Characteristics

I NextGeneration

! 5.z
i 1 0.4

I 20.8
20000

16

! 2000

[ Solar Pressure i Ts'

Aerodynamic i Ta !!

Gravity gradient i Tgi

Magnetic Field !Tm i

Total torque: i Td!

1.9E-06

8.7E-05

3.9E-07

2.6E-05

1.1E-04

Table 4-1: Magnitudes of Disturbance Torques at 400 km
Altitude

Component Value

wheel speed 3000 rpm
disk radius 0.08 m

individual spinning mass 3.60 kg
drive electronics 0.91 kg

total structure (4 wheels) 2.00 kg

dumping thruster mass 0.4 kg
total thruster mass (6) 2.4 kg

200s Isp propellant mass 5.23 kg

280s Isp propellant mass 3.73 kg

Totals: 4 wheels & 6 thrusters

Four wheel system mass 20.04 kg

six thruster 200 Isp mass 7.63 kg

six thruster 280 Isp mass 6.13 kg

Table 4-2: Four wheel system baseline

assumptions
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Figure 3-l: PPT flight system schematic.
Telemetry signals depend on application.
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Figure 3-2: Impulse bit vs. stored energy for a
range of flight and flight-qualified PPT systems.
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Total of 12 PPTs

Two per spacecraft face

°/
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/

Axes Key:

z axis

Nadir vector

x axis

Velocity vec

y axis

Negative orbit normal

Figure 4-1: Generic Spacecraft Illustrating Pulsed Plasma Thruster Placement
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